Similarity properties, critical behaviour and self-similar dynamics of radiating fluids : from dimensional analysis to the Burgan-Feix-Munier transformation

E. Falize ${ }^{1}$
${ }^{1}$ CEA-DAM-DIF, F-91297 Arpajon, France, Emeric.Falize@obspm.fr

The self-similar solutions and similarity properties of flows appear as a powerful theoretical tool which allows to validate numerical simulations and identify the key parameters in experiments [1]. Thanks to their analytical tractability as well as their physical content, the self-similar solutions play an important role in order to study the dynamics of physical systems and specifically the dynamics of High-Energy-Density matter [2].

In this work we demonstrate that we can unify apparently disparate and ad hoc methods which allow to obtain these specific class of solutions to differential equations with a unique transformation named the Burgan-Feix-Munier transformation (BFMT) [3,4,5,6]. We present the application of the BFMT on the radiating hydrodynamics regime study in $[7,8]$. Based on the theoretical results which were obtained, we determine the critical regime which play an important role and can be observed in several HighEnergy Density Physics domains as well as in astrophysical situations.

References

[1] Sedov L. I., Similarity and Dimensional Methods in Mechanics, New York: Academic Press, (1959)
[2] Simonsen V. \& Meyer-ter-Vehn J., Phys. Fluids, 9: 1462 (1997)
[3] Burgan J. R. et al., Strongly coupled plasmas, B36: 597 (1978)
[4] Munier A. \& Feix M. R., Astrophys. J., 267: 344 (1983)
[5] Falize E. et al., J. Phys. Conf. Series, 112: 042015 (2008)
[6] Bouquet S. et al., Astrophys. J., 293 :494 (1985)
[7] Falize E. et al., Astrophys. J. (submitted), ArXiv 0910.2338F
[8] Falize E. et al., Astrophys. Spac. Sci. 322: 107 (2009)
$8^{\text {th }}$ International Conference on High Energy Density Laboratory Astrophysics
March 15-18, 2010
California Institute of Technology
Pasadena, California, USA
http://hedla2010.caltech.edu/

